在水電站運行中,當水輪發(fā)電機組突然甩負荷時,調(diào)速器自動控制水輪機快速關閉導葉,壓力管道內(nèi)產(chǎn)生水壓和機組轉(zhuǎn)速上升。對于壓力引水管道較長的電站,改變導葉關閉時間,有時不能同時使壓力和轉(zhuǎn)速上升都控制在允許的范圍之內(nèi)。為時,通常采用設置調(diào)壓井或調(diào)壓閥等方法來解決壓力和轉(zhuǎn)速上升的矛盾,保證電站安全運行。但設置調(diào)壓井需要較大的投資和較長的工期,而有些電站限于地形、地質(zhì)條件,還難于建造調(diào)壓井,因此對于這一類中小型電站采用調(diào)壓閥方案具有較明顯的優(yōu)勢。
目前生產(chǎn)的全油壓控制TFW型調(diào)壓閥具有和導葉液壓聯(lián)動的特點,安全可靠、投資少、工期短等優(yōu)勢。從上個世紀80年代以來國內(nèi)已有近百座水電站設計中取消了調(diào)壓井,采用TFW型全油壓控制調(diào)壓閥,還沒有發(fā)生一起安全事故。浙江的金坑、宣平溪等水電站已經(jīng)安全運行了多年,即使是發(fā)達國家,如挪威在水電站中也大量使用調(diào)壓閥來代替調(diào)壓井(額定水頭為158m、單機容量60MW的TJΦRHM水電站就是一個例子)。
現(xiàn)就調(diào)壓閥的液壓原理、特點、過渡過程等作如下闡述。
1、全油壓控制調(diào)壓閥液壓原理
全油壓控制TFW型調(diào)壓閥基本動作是:快速開啟,緩慢關閉;小負荷變化時,調(diào)壓閥不動作;甩較大負荷時,調(diào)壓閥開啟,并具有導葉兩段關閉的性能;增負荷時,調(diào)壓閥不起作用。 經(jīng)過改裝的調(diào)速器特殊主配壓閥和調(diào)壓閥的液壓控制系統(tǒng)見圖1,其特點是全部采用壓力油直接進行控制和操作,其液壓原理如下::
(1)機組負荷不變時。主配壓閥活塞在“平衡位置”,壓力油通過P1腔經(jīng)過節(jié)流閥A后進入調(diào)壓閥接力器關閉腔TG,調(diào)壓閥開啟腔TK通排油腔O2。由于調(diào)壓閥關閉腔的壓力大于閥盤上的水推力,故調(diào)壓閥處于關閉位置。如果調(diào)壓閥本來已經(jīng)打開,就向關閉側(cè)運動。
(2)機組減少量負荷時(約機組額定出力的15%以內(nèi))。由于主配壓閥上移量較小,處于“減部分負荷”位置,僅有少量壓力油從P1腔經(jīng)節(jié)流閥A后進入導葉接力器關閉腔JG腔而緩慢關閉導葉,調(diào)壓閥關閉腔壓力略微減少,但仍大于閥盤上的水推力,調(diào)壓閥開啟腔TK通排油腔O2,故調(diào)壓閥保持關閉狀態(tài)。
(3)當機組瞬時甩較大負荷時(大于機組額定出力的15%以上)。主配壓閥活塞上移量較大,處于“甩較大負荷”位置,大量壓力油直接經(jīng)過TK腔進入調(diào)壓閥接力器開啟腔,調(diào)壓閥快速開啟,而調(diào)壓閥關閉腔TG與導葉接力器關閉腔JG連通,導葉接力器開啟腔JK通排油腔O2,導葉快速關閉。所以調(diào)壓閥快速開啟,導葉快速關閉,兩者是協(xié)聯(lián)同步的,滯后時間為零。
(4)當機組增負荷時。主配壓閥活塞下移,處于“增負荷”位置,壓力油P1直接進入導葉接力器開啟腔中,調(diào)壓閥關閉腔壓力略微減少,但仍大于閥盤上的水推力,調(diào)壓閥開啟腔TK通排油腔O2,故調(diào)壓閥保持關閉狀態(tài)。
(5)導葉兩段關閉裝置。在調(diào)壓閥開始快速開啟時,受節(jié)流閥C的限制,油壓迅速升高,油壓逆止閥開啟,調(diào)壓閥關閉腔TG的壓力油進入導葉接力器關閉腔JG,多余的油量經(jīng)節(jié)流閥D回至調(diào)速器回油箱,故調(diào)壓閥開啟速度加快,提前開到限位環(huán)所限制的位置,此時導葉接力器未處于全關位置,只能通過少量來自節(jié)流閥A的壓力油緩慢關閉,從而起到導葉分兩段關閉的功能。
(6)如果調(diào)壓閥失靈,機組只能通過節(jié)流閥A的少量壓力油慢速關閉,以保證引水管道壓力上升不超過允許值。
(7)各節(jié)流閥的作用。①節(jié)流閥A:整定調(diào)壓閥失靈時導葉慢關時間,也定了調(diào)壓閥的關閉時間;②節(jié)流閥C:整定油壓逆止閥的開啟壓力,以保證逆止閥迅速開啟;③節(jié)流閥D:整定導葉兩段關閉的拐點位置。
2、調(diào)壓閥特性
國內(nèi)現(xiàn)有全油壓控制調(diào)壓閥按直徑和水頭共分7個品種,主要參數(shù)見表1。
(1)結(jié)構(gòu)特點。TFW型調(diào)壓閥的本體帶導葉消能和補氣的閥殼、錐型或圓形的閥盤、平衡腔、接力器、引導油腔、活塞行程限制環(huán)、進排水管和補氣閥等組成。接力器及引導油腔直接與閥殼連成整體,體積小,結(jié)構(gòu)簡單,布置緊湊。
(2)流量特性。根據(jù)調(diào)壓閥的閥塞類型和Yx/Dx值查詢單位流量Q1x′見表2,由此得到調(diào)壓閥的相應流量Q=,從而可以繪制出各種調(diào)壓閥的開度與流量關系曲線。
(3)操作特性。調(diào)壓閥最低操作油壓的范圍一般在1.3~2.0MPa之間,并隨著調(diào)壓閥工作水頭的提高而提高,最高的操作壓力一般為2.5MPa。
(4)布置要點。調(diào)壓閥的布置應盡可能不增加機組間距和跨度,并與調(diào)速器、進水閥等協(xié)調(diào)布置。對于立式機組,一般布置在蝸殼進口前或蝸殼進口段上,對于臥式機組一般布置在水輪機進水閥后蝸殼進口前的鋼管上。調(diào)壓閥的泄流方式應考慮消能效果,盡管水流通過調(diào)壓閥后消除了大部分能量,但仍應考慮剩余能量的消除。
設置調(diào)壓閥電站的過渡過程
假定水輪機、調(diào)壓閥的流量與時間呈線性關系,而且互相匹配很好,因而整個引水系統(tǒng)的流量也呈線性關系變化。設置調(diào)壓閥后的調(diào)節(jié)特性和流量與時間的變化見圖2所示。圖中實線1為導葉快速關閉過程線;虛線2為調(diào)壓閥拒動時導葉慢關閉過程線;點劃線3為調(diào)壓閥啟閉過程線。為了控制水輪機轉(zhuǎn)速的升高,拐點流量Qg一般選擇在空載開度附近,因此水輪機沒有多余的能量使機組轉(zhuǎn)速繼續(xù)上升。同時要限制水壓的升高,機組流量的減少應控制在一定的范圍內(nèi)。
3.1計算標準
(1)機組突甩負荷后,有關規(guī)范蝸殼最大壓力升高率按以下情況考慮:①額定水頭小于40m時,宜為70%~50%;②額定水頭在40~100m時,宜為50%~30%;③額定水頭大于100m時,宜小于30%。裝設調(diào)壓閥后,有條件將壓力升高控制在更小的升壓范圍內(nèi),結(jié)合引水系統(tǒng)的設計和分段關閉裝置的現(xiàn)場調(diào)整,獲得較優(yōu)的關閉規(guī)律。
(2)機組甩負荷時轉(zhuǎn)速升高率按以下情況考慮:①當機組容量占電力系統(tǒng)總?cè)萘康谋戎剌^大,且擔負調(diào)頻任務時,宜小于45%;②當機組容量占電力系統(tǒng)總?cè)萘康谋戎夭淮蠡驌摶蓵r,宜小于55%。
考慮到目前的允許轉(zhuǎn)速升高有提高的趨勢,建議裝設調(diào)壓閥后轉(zhuǎn)速升高率在計算時可按50%控制。
(3)機組突增負荷和甩部分負荷時,壓力下降應保證在水庫死水位時整個壓力管道都有2m以上的正壓力余量。
3.2變量說明
除圖2中說明的變量之外,計算時仍需涉及到的變量如下:
(1)Ts′:不考慮壓力升高,控制速率升高的情況下,機組全關閉時間;
(2)β:允許的轉(zhuǎn)速升高率;
(3)ζ:允許的壓力升高率;
(4)QTM:允許機組減少的流量;
(5)Yg:水輪機空載相對開度;
(6)Yk:調(diào)壓閥全開時水輪機接力器相對開度。
3.3計算方法
(1)根據(jù)β求Ts′及調(diào)壓閥開啟時間Txk。計算Ts′與不設調(diào)壓閥時的方法一樣,可以根據(jù)《水電站機電設計手冊》(水力機械)中的有關公式計算。由此得到Txk=(1-Yg)×Ts′。當采用導葉一段關閉規(guī)律時,Txk=Ts′。
(2)根據(jù)ζ求水輪機慢關閉時間Tsm。計算Ts′與不設調(diào)壓閥時的方法一樣,可根據(jù)水錘相的特點,利用阿列維公式反算得到。
(3)計算機組允許的流量減少Q(mào)TM。按線性關系,調(diào)壓閥開始關閉前的時間為Txk+Tp,而機組流量減少的速率允許值為(Txk+Tp)/Tsm,因此,QTM=(Txk+Tp)/Tsm×QT。計算時,由于Tp的不確定性,采用QTM=Txk/Tsm×QT簡化計算是安全的。
(4)計算調(diào)壓閥的泄放流量Qx及開度Yx。水輪機流量的減少和調(diào)壓閥泄流的增加導致引水系統(tǒng)的過流量變化,因此應保證QTM≤QT-QX-Qg,由此得到調(diào)壓閥的泄放流量QTM。根據(jù)調(diào)壓閥的流量特性計算得到所需的開度Yx,并選擇調(diào)壓閥型號及參數(shù)。
(5)驗算機組增負荷造成的壓力下降。此時調(diào)壓閥不動作,計算時可按1臺機組從空載開度突增到全負荷的情況,計算方法與不設調(diào)壓閥的情況一樣,可根據(jù)有關設計手冊的公式計算壓降,從而確定合理的增負荷開機時間。
(6)驗算甩部分負荷時調(diào)壓閥仍全開時造成的壓力下降。①計算調(diào)壓閥全開時水輪機接力器開度:Yk=(Tsm+Txk-Ts)/Tsm;②根據(jù)機組接力器行程和導葉開度關系曲線查得導葉開度τ0,然后從轉(zhuǎn)輪綜合特性曲線查得單位流量Q1′,計算水輪機流量QT=Q1′×D12×H(1/2);③根據(jù)調(diào)壓閥限制開度計算調(diào)壓閥全開流量:QX=;④如果QX>QT,則在起始段出現(xiàn)壓力下降:計算引水系統(tǒng)平均流速V、計算流速變化ΔV=(QX-QT)×V/QT、計算導葉接力器從Yk開度開始關閉的時間Tk=Y(jié)k×Ts′、計算管道特性系數(shù)ρ=a×ΔV/(2×g×H)、σ=L×ΔV/(g×H×Tk),根據(jù)ρτ0判斷最大水錘出現(xiàn)的相序計算壓力下降。
(7)根據(jù)壓力下降計算成果確定是否需要優(yōu)化壓力管道的布置。
4、調(diào)壓閥的整定
調(diào)壓閥參數(shù)整定前,機組、調(diào)速器、油壓裝置及調(diào)壓閥設備應全部安裝合格,并達到啟動試運行的要求后,根據(jù)調(diào)節(jié)保證計算成果進行有關參數(shù)的整定。
(1)初調(diào)各節(jié)流閥至一定位置,模擬動作數(shù)次,排除管路中的空氣。
(2)切除調(diào)壓閥,調(diào)整節(jié)流閥A,整定導葉的慢關閉時間。
(3)投入調(diào)壓閥,調(diào)整節(jié)流閥D,整定兩段關閉的拐點位置。
(4)調(diào)整節(jié)流閥C,整定油壓逆止閥的啟動油壓。
(5)導葉快關閉時間和增負荷開機時間仍由特殊主配壓閥開口大小來整定。
5、結(jié)語
(1)由于全油壓控制TFW型調(diào)壓閥具有動作靈敏、安全可靠、結(jié)構(gòu)簡單、調(diào)整維護方便、沒有滯后時間、投資少等優(yōu)點,因此自20世紀80年代以來,國內(nèi)已有近百座水電站在設計中取消了調(diào)壓井而采用TFW型含油壓控制調(diào)壓閥;即使發(fā)達國家的水電站中也大量采用調(diào)壓閥替代調(diào)壓井(挪威TJΦRHM水電站就是其中之一,該電站額定水頭為158m,單機容量為60MW)。
(2)由于本控制系統(tǒng)的調(diào)壓閥在負荷小擾動條件下不動作,而此類電站的水流慣性時間常數(shù)TW均較大,因此對于裝設調(diào)壓閥的電站,在選擇調(diào)速器時,其暫態(tài)反饋強度bt和緩沖時間常數(shù)Td及有關技術(shù)參數(shù),要有盡可能大的可調(diào)范圍。
(3)由于機組流量特性和調(diào)壓閥流量特性不同,難以完全匹配一致,往往在導葉關閉起始時段和關閉結(jié)束時段發(fā)生壓力下降,因此合理選擇調(diào)壓閥和水輪機導葉的啟閉規(guī)律,使整個引水系統(tǒng)流量均勻變化,可以減少或避免壓力下降。
(4)對于高水頭電站的調(diào)壓閥可采用不銹鋼密封環(huán),以提高止水效果和延長密封壽命,從而減少能源浪費。
(5)目前多數(shù)中小型調(diào)速器的操作油壓已經(jīng)提高到4~16MPa,計算機監(jiān)控系統(tǒng)也在大多數(shù)的水電站投入使用。為適應這種變化,調(diào)壓閥也需作相應的改進(如增設調(diào)壓閥行程信號裝置,參與到機組的運行控制中,防止調(diào)壓閥仍處于開啟狀態(tài)時機組增負荷)。